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Local jump random walk
I We consider a random walk of a particle along the real line.
I hZ := {hz : z ∈ Z} — possible states of the jumping particle.
I u(x , t) — probability of the particle to be at x ∈ hZ at time

t ∈ τN.

I Local jump random walk: at each time step of size τ , the
particle jumps to the left or right with probability 1/2.

u(x , t + τ) =
1

2
u(x + h, t) +

1

2
u(x − h, t)

If we consider τ = 2h2, then we obtain

u(x , t + τ)− u(x , t)

τ
=

u(x + h, t) + u(x − h, t)− 2u(x , t)

h2

Letting h, τ ↓ 0, we have

heat equation: ut −∆u = 0.
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Long jump random walk
I The probability that the particle jumps from the point

hk ∈ hZ to the point hl ∈ hZ is K(k − l) = K(l − k).

u(x , t + τ) =
∑
k∈Z
K(k)u(x + hk, t),

which, together with
∑

k∈ZK(k) = 1 yield

u(x , t + τ)− u(x , t) =
∑
k∈Z
K(k) (u(x + hk , t)− u(x , t))

I Let K(y) = |y |−(n+2s) with s ∈ (0, 1).

I Choose τ = h2s , then K(k)
τ = hnK(kh)

Letting h, τ ↓ 0,

∂tu =

∫
R

u(x + y , t)− u(x , t)

|y |n+2s
dy ⇐⇒ ∂tu = −(−∆)su

Fractional heat equation: Singular integrals naturally arise as a
continuous limit of discrete, long jump random walks.
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Applications I
Nonlocal operators and fractional diffusion appear in:

I Modeling anomalous diffusion (Metzler, Klafter 2004).

I Biophysics (Bueno-Orovio, Kay, Grau, Rodriguez, Burrage
2014)

I Turbulence (Chen 2006).

I Image processing (Gilboa, Osher 2008)
Based on our PDE approach: Gatto, Hesthaven (2014).

I Nonlocal field theories (Eringen 2002).

I Materials science (Bates 2006).

I Peridynamics (Silling 2000; Du, Gunzburger 2012).

I Lévy processes (Bertoin 1996).

I Fractional Navier Stokes equation (Li et al 2012; Debbi 2014):

ut + (−∆)su + u∇u −∇p = 0

I Fractional Cahn Hilliard equation (Segatti, 2014).
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The linear elliptic problem

Let Ω be a bounded domain with Lipschitz boundary and

Lu = −∇· (a∇u) + cu

be a second order, symmetric, elliptic differential operator.
Let s ∈ (0, 1). Given f : Ω→ R, find u such that

Lsu = f in Ω

where Ls denotes the fractional power of L supplemented with
homogeneous Dirichlet boundary conditions.

Difficulty: Ls is a nonlocal operator.
Goal: design efficient solution techniques for problems involving Ls .

From now on L = −∆.
All our results hold for a general operator!



Spectral theory

We consider the definition of (−∆)s based on spectral theory:

I −∆ : H2(Ω) ∩ H1
0 (Ω) ⊂ L2(Ω)→ L2(Ω) is symmetric, closed

and unbounded and its inverse is compact.

I The eigenpairs {λk , ϕk}, i.e.

−∆ϕk = λkϕk , ϕk |∂Ω = 0

form an orthonormal basis of L2(Ω).

I For u sufficiently smooth:

u =
∞∑

k=1

ukϕk 7−→ (−∆)su :=
∞∑

k=1

ukλ
s
kϕk

I (−∆)s : Hs(Ω)→ H−s(Ω), Hs(Ω) = [H1
0 (Ω), L2(Ω)]1−s .



Spectral and integral methods
Spectral method: Given f ∈ L2(Ω),

f =
∞∑

k=1

fkϕk : (−∆)su = f =⇒ uk = fkλ
−s
k

Algorithm:
I Compute {λk , ϕk}N

k=1 and the Fourier coefficients fk .
I Compute uk = fkλ

−s
k .

Disadvantages:
I Quite expensive to compute N eigenpairs when N is large!

Integral method: extend u by zero outside Ω and compute

(−∆)su(x) = cn,sp.v.

∫
Rn

u(x)− u(z)

|x − z |n+2s
dz ,

which is equivalent to F((−∆)su)(ξ) = |ξ|2sF(u).
Discretization: Write a weak form and use a Galerkin method.
Disadvantages:

I Nonlocality =⇒ dense matrix!
I Singularity =⇒ complicated quadrature procedures!
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(−∆)1/2: The Dirichlet-to-Neumann operator

I DtN: T : u 7→ −∂yU(·, 0) is such that

T 2u = ∂y (∂yU(·, 0)) = −∆x ′U(·, 0) = −∆x ′u.

I T is positive, then T = (−∆x ′)
1
2 and (−∆x ′)

1
2 u = ∂νU .



The α-harmonic extension

Here:

I s ∈ (0, 1) and α = 1− 2s ∈ (−1, 1).

I ∂ναU = − limy↓0 yα∂yU = ds f on Ω× {0}.
I ds = 2αΓ(1− s)/Γ(s).

I References: Caffarelli, Silvestre (2007), Cabré, Tan (2010), Capella
et al. (2011), Stinga Torrea (2010–2012).



The α-harmonic extension

Fractional powers of −∆ can be realized as a DtN operator:
∇·(yα∇U) = 0 in C
U = 0 on ∂LC
∂ναU = ds f on Ω× {0}

⇐⇒

{
(−∆)su = f in Ω

u = 0 on ∂Ω

u = U(·, 0).

Here:

I C = Ω× (0,∞)

I α = 1− 2s ∈ (−1, 1)

I ∂ναU = − limy↓0 yα∂yU = ds f

I ds = 2αΓ(1− s)/Γ(s)



Weak formulation
A possible weak formulation reads∫

C
yα∇U · ∇φ = ds〈f , trΩφ〉H−s (Ω),Hs (Ω), ∀φ ∈ ◦

H1
L(yα, C),

where

◦
H1

L(yα, C) =
{

w ∈ L2(yα, C) : ∇w ∈ L2(yα, C), w |∂LC = 0
}
.
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The weight yα is degenerate (α > 0) or singular(α < 0)!



Muckenhoupt weights

There is a constant C such that for every a, b ∈ R, with a > b,

1

b − a

∫ b

a
|y |α dy · 1

b − a

∫ b

a
|y |−α dy ≤ C

which means yα belongs to the Muckenhoupt class A2. Then

I The Hardy-Littlewood maximal operator is continuous on
L2(yα, C).

I Singular integral operators are continuous on L2(yα, C).

I L2(yα, C) ↪→ L1
loc (C).

I H1(yα, C) is Hilbert and C∞b (C) is dense.

I Traces on ∂LC are well defined.
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Weighted Sobolev spaces

I Weighted Poincaré inequailty: There is a constant C , s.t.∫
C

yα|w |2 ≤ C

∫
C

yα|∇w |2 ∀w ∈ ◦
H1

L(yα, C).

I Surjective trace operator trΩ :
◦

H1
L(yα, C)→ Hs(Ω).

I Lax-Milgram =⇒ existence and uniqueness for every
f ∈ H−s(Ω). Also

‖U‖ ◦
H1

L(yα,C)
= ‖u‖Hs (Ω) = ds‖f ‖H−s (Ω).

We will discretize the α-harmonic extension!

U ∈ ◦
H1

L(yα, C) :


∇·(yα∇U) = 0 in C
U = 0 on ∂LC
∂ναU = ds f on Ω× {0}
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Separation of Variables

• Apply separation of variables (Capella et al. 2011)

u(x ′) =
∞∑

k=1

ukϕk (x ′) =⇒ U(x ′, y) =
∞∑

k=1

ukϕk (x ′)ψk (y),

where the functions ψk solve
ψ′′k +

α

y
ψ′k − λkψk = 0, in (0,∞),

ψk (0) = 1, lim
y→∞

ψk (y) = 0.

• It turns out that

ψk (y) = cs

(√
λk y

)s
Ks(
√
λk y),

Ks – modified Bessel function of the second kind.

• Since
ψ′k (y) ≈ y−α, y ↓ 0 =⇒ U 6∈ H1(C).
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Domain truncation
The domain C is infinite. We need to consider a truncated problem.

Theorem (exponential decay)

For every Y > 0

‖U‖ ◦
H1

L(yα,Ω×(Y ,∞))
. e−

√
λ1Y /2‖f ‖H−s (Ω).

Let v solve 
∇·(yα∇v) = 0 in CY = Ω× (0,Y ),

v = 0 on ∂LCY ∪ Ω× {Y },
∂ναv = ds f on Ω× {0}.

Theorem (exponential convergence)

For all Y > 0,

‖U − v‖ ◦
H1

L(yα,CY )
. e−

√
λ1Y /4‖f ‖H−s (Ω).



Finite element method I
I Continuous solution. V-Hilbert space. Find u s.t.

B[u, v ] = F [v ], ∀v ∈ V.

B-continuous and coercive bilinear form, and F -continuous
linear functional.

I Approximate solution. Let VN be a finite dimensional space.
Find UN s.t.

B[UN,VN] = F [VN], ∀v ∈ VN.
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Finite element method II
I Continuous solution. V-Hilbert space. Find u s.t.

B[u, v ] = F [v ], ∀v ∈ V.

B-continuous and coercive bilinear form, and F -continuous
linear functional.

I Approximate solution. Let VN be a finite dimensional space.
Find UN s.t.

B[UN,VN] = F [VN], ∀v ∈ VN.

I Error estimates.
I A priori. Convergence, a rate of convergence, and know the

depende of the error on different factors. Typical estimate:

‖u − UN‖V . N−a‖u‖ ≈ hb‖u‖

I A posteriori. Information beyond asymptotics; computable in
terms of F and UN. Quality assessment; adaptivity.



Galerkin method: mesh

Let TΩ = {K} be triangulation of Ω (simplices or cubes)

I TΩ is conforming and shape regular.

Let TY = {T} be a triangulation of CY into cells of the form

T = K × I , K ∈ TΩ, I = (a, b).

Why? Natural on the cylinder CY , deal.ii, and Uyy ≈ y−α−1 as
y ≈ 0+

Approximation of singular functions =⇒ anisotropic elements

Shape regularity condition does
NOT hold!



Galerkin method: discrete spaces

We only require that if T = K × I and T ′ = K ′ × I ′ are neighbors

|I |
|I ′|
' 1,

so the lengths of I and I ′ are comparable. This weak condition
allows us to consider anisotropic meshes

Define:

V(TY ) =
{

W ∈ C0(CY ) : W |T ∈ P1(T ), W |ΓD
= 0
}

with ΓD = ∂LC ∪ Ω× {Y }, and

U(TΩ) = trΩV(TY ) =
{

W ∈ C0(Ω̄) : W |K ∈ P1(K ), W∂Ω = 0
}



Galerkin method: discrete problem

Galerkin method for the extension: Find VTY ∈ V(TY ) such that∫
CY

yα∇VTY∇W = ds〈f , trΩW 〉H−s (Ω),Hs (Ω), ∀W ∈ V(TY )

Define:
UTΩ

= trΩVTY ∈ U(TΩ)

A trace estimate and Cèa’s Lemma imply quasi-best approximation:

‖u − UTΩ
‖Hs (Ω) . ‖v − VTY ‖ ◦H1

L(yα,CY )

= inf
W∈V(TY )

‖v −W ‖ ◦
H1

L(yα,CY )

Setting W = Πv ∈ V(TY ) =⇒ interpolation analysis!
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The averaged Taylor polynomial
Consider ω ∈ A2(RN) and φ ∈ L2(ω,D), with D ⊂ RN . Given a
node z of the mesh, we define

Given m ∈ N, we define

Qm
z φ(y) =

∫ ∑
|α|≤m

1

α!
Dαφ(x)(y − x)αψz (x) dx .

A weighted Poincaré inequailty yields

‖φ− Q0
zφ‖L2(ω,Sz ) . diam(Sz )‖∇φ‖L2(ω,Sz ),

which, via an induction argument, allows us to derive

|φ−Qm
z φ|Hk (ω,Sz ) . diam(Sz )m+1−k |φ|Hm+1(ω,Sz ), k = 0, 1, ...,m+1

Extension to the weighted case! Simple argument!
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The quasi-interpolant operator

We introduce an averaged interpolation operator Π á la Duran
Lombardi, 2005 (Sobolev 1950, Dupont Scott 1980)

Πφ(z) = Qm
z φ(z).

Notice that:

I This is defined for all polynomial degree m and any element
shape (simplices or rectangles).

I We do not go back to the reference element — This is
important for anisotropic estimates.

The mesh is rectangular and Cartesian. If R and S are neighbors

hi
R/hi

S . 1, i = 1,N.
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Error estimates on rectangles

Theorem
If φ ∈ H1(ω,SR)

‖φ− Πφ‖L2(ω,R) .
N∑

i=1

hi
R‖∂iφ‖L2(ω,SR ).

If φ ∈ H2(ω,SR)

‖∂j (φ− Πφ)‖L2(ω,R) .
N∑

i=1

hi
R‖∂i∂jφ‖L2(ω,SR ),

‖φ− Πφ‖L2(ω,R) .
N∑

i ,j=1

hi
Rhj

R‖∂i∂jφ‖L2(ω,SR ).



Error estimates on rectangles

Theorem
If ω ∈ Ap(RN), and φ ∈ �����

H1(ω,SR) W 1
p (ω,SR)
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Estimates on simplicial elements, different metrics and applications in

RHN, EO, AJS. Piecewise polynomial interpolation in Muckenhoupt

weighted Sobolev spaces and applications, Numer. Math. (2015)
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Regularity of Extension U
Using properties of Bessel functions we obtain

ψ′′k (y) ≈ y−α−1, y ↓ 0 =⇒ U /∈ H2(C, yα).

But

Theorem (regularity of the extension)

If f ∈ H1−s(Ω) and Ω is C 1,1 or a convex polygon

‖∆x ′U‖2
L2(C,yα) + ‖∂y∇x ′U‖2

L2(C,yα) = ds‖f ‖2
H1−s (Ω)

If β > 1 + 2α
‖∂yyU‖L2(C,yβ) . ‖f ‖L2(Ω)

Anisotropic estimates compensate singular behavior!



Error Estimates: Quasi-uniform Meshes

On uniform meshes hT ≈ hK ≈ hI for all T ∈ TY , then

Theorem (error estimates)

The following estimate holds for all ε > 0

‖∇(v − VTY )‖L2(CY ,yα) . hK‖∂y∇x ′v‖L2(C,yα) + hs−ε
I ‖∂yy v‖L2(C,yβ)

. hs−ε‖f ‖H1−s (Ω)

Consequently,

‖u − UTΩ
‖Hs (Ω) . hs−ε‖f ‖H1−s (Ω).

• This is suboptimal in terms of order (only order s − ε)
• It cannot be improved as numerical experimentation reveals!



Numerical Experiment: Quasi-uniform Mesh

Let Ω = (0, 1) and f = π2s sin(πx), then

U =
21−sπs

Γ(s)
sin(πx ′)y sKs(πy)

If s = 0.2, then
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The energy error behaves like DOFS−0.1 ≈ h0.2, as predicted!



Error Estimates: Graded Meshes

We use the principle of error equilibration. Mesh on (0,Y )

yj = Y
(

j

M

)γ
, j = 0,M, γ > 1

ψ′′k (y) ≈ y−α−1 =⇒ energy equidistribution for γ > 3/(1− α).

Theorem (error estimates)

If f ∈ H1−s(Ω) and Y ≈ | log N|,

‖u − UTΩ
‖Hs (Ω) = ‖∇(U − VTY )‖L2(C,yα)

. | log N|sN−
1

n+1 ‖f ‖H1−s (Ω),

or equivalently

‖u − UTΩ
‖Hs (Ω) . | log NΩ|sN

−1/n
Ω ‖u‖H1+s (Ω).
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Numerical Experiments: Meshes for Circle and s = 0.3

Set Ω = D(0, 1) ⊂ R2,

Figure : Uniform mesh in x ′ and anisotropic mesh in y



Experimental Rates for Circle and s = 0.3 and s = 0.7

Set Ω = D(0, 1) ⊂ R2, f = j2s
1,1J1(j1,1r)(A1,1 cos(θ) + B1,1 sin(θ)).

With graded meshes:
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The experimental convergence rate −1/3 is optimal!

RHN, EO, AJS. A PDE approach to fractional diffusion in general

domains: a priori error analysis, Found. Comput. Math. (2014).
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Adaptivity

Adaptivity is motivated by

• Computational efficiency: extra n + 1-dimension.

• The a priori theory requires
I regularity of the datum: f ∈ H1−s(Ω).
I regularity of the domain: Ω is C 1,1 or a convex polygon.

• If one of these conditions is violated, the solution U may have
singularities in Ω and exhibit fractional regularity.

• Quasi-uniform refinement of Ω would not result in an efficient
solution technique.

• We need an adaptive loop.



An adaptive loop

Our adaptive loop is almost standard:

SOLVE → ESTIMATE → MARK → REFINE

with

I SOLVE: Finds VTY , the Galerkin solution.

I ESTIMATE: Compute Ez ′ for every node z ′ ∈ Ω.

I MARK: For θ ∈ (0, 1) choose a minimal subset of nodes M:∑
z ′∈M

E2
z ′ ≥ θ2E2

T .

I REFINE: Given M:

1. ∀z ′ ∈M refine the cells K 3 z ′ to get T̃Ω.
2. Create an anisotropic mesh {Ĩ} with M so that grading holds.
3. The refined mesh is T̃Y = T̃Ω × {Ĩ}.



Adaptivity

I One of the main ingredients of our adaptive loop is an a
posteriori error estimator.

Despite of what might be claimed, the theory of a posteriori error
estimation on anisotropic discretizations is still in its infancy.

We propose an error estimator based on solving local problem on
stars:



An ideal error estimator
Define

W(Cz ′) =
{

w ∈ H1(yα, Cz ′) : w = 0 on ∂Cz ′ \ Ω× {0}
}
.

For z ′ ∈ Ω a node, we define the ideal estimator ζz ′ ∈W(Cz ′):∫
Cz′

yα∇ζz ′∇ψ = ds〈f , trΩψ〉H−s (Ω)×Hs (Ω) −
∫
Cz′

yα∇V∇ψ

for all ψ ∈W(Cz ′), and

ẼTY =

(∑
z ′

Ẽ2
z ′

)1/2

, Ez ′ = ‖∇ζz ′‖L2(yα,Cz′ )
.

Theorem (ideal estimator)

We have
‖∇e‖L2(yα,CY ) . ẼTY

and, for every node z ′ ∈ Ω

Ẽz ′ ≤ ‖∇e‖L2(yα,Cz′ )
.
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w ∈ H1(yα, Cz ′) : w = 0 on ∂Cz ′ \ Ω× {0}
}
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yα∇ζz ′∇ψ = ds〈f , trΩψ〉H−s (Ω)×Hs (Ω) −
∫
Cz′

yα∇V∇ψ

for all ψ ∈W(Cz ′), and

ẼTY =

(∑
z ′

Ẽ2
z ′

)1/2

, Ez ′ = ‖∇ζz ′‖L2(yα,Cz′ )
.

Theorem (ideal estimator)

We have
‖∇e‖L2(yα,CY ) . ẼTY

and, for every node z ′ ∈ Ω

Ẽz ′ ≤ ‖∇e‖L2(yα,Cz′ )
.



Local Problems on Stars

• Discretization based on P2: Discrete space W(Cz ′). Then, we
define

E2
z ′ :=

∫
Cz′

yα|∇Wz ′ |2, E2
TΩ

:=
∑

z ′

E2
z ′ .

• Define the data oscillation. If fz ′|K = 1
|K |
∫

K f then

oscTΩ
(f )2 =

∑
z ′

oscz ′(f )2, oscz ′(f )2 = dsh2s
z ′ ‖f − fz ′‖2

L2(Sz′ )

Theorem (computable estimator)

E2 . ‖∇(v − VTY )‖2
L2(yα,CY ) . E

2 + osc(yα,VTY , f , Cz ′)
2

• Is this enough for convergence and optimality?



L-shaped domain with incompatible data

I Ω is the standard L-shaped domain. f = 1. For s < 1
2 the

data is not compatible with the problem.

I The nature of the singularity of the solution is not known for
this problem.
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L-shaped domain with incompatible data

Some meshes:

s = 0.2 s = 0.8



A posteriori error analysis and adaptivity

LC, RHN, EO, AJS: A PDE approach to fractional diffusion in general
domains: a posteriori error analysis . J. Comput. Phys. (2015).

I Question: Is there any theory on anisotropic error estimators?
(Cohen Mirebeau 2010-2012) (Petrushev 2007-2009)?

I A posteriori error estimators, convergence of AFEM, convergence
rates for AFEM are still open questions.
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Space-time fractional parabolic problem

Let T > 0 be some positive time. Given f : Ω→ R and
u0 : Ω→ R the problem reads: Find u such that

∂γt u + (−∆)su = f in Ω× (0,T ] u|t=0 = u0 in Ω.

Here γ ∈ (0, 1]. For γ = 1 this is the usual time derivative, if
γ < 1 we consider the Caputo derivative

∂γt u(x , t) =
1

Γ(1− γ)

∫ t

0

∂r u(x , r)

(t − r)γ
dr .

Nonlocality in space and time!
We will overcome the nonlocality in space using the

Caffarelli-Silvestre extension.
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Extended evolution problem
The Caffarelli-Silvestre extension turns our problem into a quasi
stationary elliptic problem with dynamic boundary condition

−∇· (yα∇U) = 0, in C, t ∈ (0,T ),

U = 0, on ∂LC, t ∈ (0,T ),

ds∂
γ
t U +

∂U
∂να

= ds f , on Ω× {0}, t ∈ (0,T ),

U = u0, on Ω× {0}, t = 0.

Connection: u = trΩ U , α = 1− 2s.
Nonlocality just in time!

Weak formulation: seek U ∈ V such that for a.e. t ∈ (0,T ),{
〈trΩ∂

γ
t U , trΩφ〉H−s (Ω)×Hs (Ω) + a(w , φ) = 〈f , trΩφ〉H−s (Ω)×Hs (Ω),

trΩU(0) = u0

for all φ ∈ ◦
H1

L(C, yα), where

a(w , φ) =
1

ds

∫
C

yα∇w · ∇φ.
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〈trΩ∂

γ
t U , trΩφ〉H−s (Ω)×Hs (Ω) + a(w , φ) = 〈f , trΩφ〉H−s (Ω)×Hs (Ω),

trΩU(0) = u0

for all φ ∈ ◦
H1

L(C, yα), where

a(w , φ) =
1

ds

∫
C

yα∇w · ∇φ.



Truncation

C is infinite, but we have exponential decay.

Theorem
Let γ ∈ (0, 1] and s ∈ (0, 1). If Y > 1 then

‖∇U‖L2(0,T ;L2(Ω×(Y ,∞),yα)) . e−
√
λ1/2

I This allows us to consider a truncated problem.

I In doing so we commit only an exponentially small error

I 1−γ‖trΩ(U − v)‖2
L2(Ω) +‖∇(U − v)‖L2(0,T ;L2(CY ,yα)) . e−

√
λ1Y

where I σ is the Riemann Liouville fractional integral of order
σ.
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Time discretization for γ = 1

Time step τ = T/K. Compute V τ = {V k}Kk=0 ⊂
◦

H1
L(yα, C),

where V k denotes an approximation at each time step.
For γ = 1, we consider backward Euler

I We initialize by setting trΩV 0 = u0.

I For k = 0, . . . ,K − 1, we find V k+1 ∈ ◦
H1

L(yα, C) solution of

(trΩ∂V k+1, trΩW )L2(Ω)+a(V k+1,W ) = 〈f k+1, trΩW 〉H−s (Ω)×Hs (Ω),

for all W ∈ ◦
H1

L(C, yα), where f k+1 = f (tk+1).

I Unconditional stability:

‖trΩV τ‖2
`∞(L2(Ω))+‖V τ‖2

`2(
◦
H1

L(yα,C))
. ‖u0‖2

L2(Ω)+‖f τ‖2
`2(H−s (Ω)).



Time discretization for γ ∈ (0, 1)

For γ ∈ (0, 1), we consider the so-called L1 scheme

∂γt u(x , tk+1) =
1

Γ(1− γ)

∫ tk+1

0

∂r u(x , r)

(tk+1 − r)γ
dr

≈ 1

Γ(2− γ)

k∑
j=0

aj
u(x , tk+1−j )− u(x , tk−j )

τγ

= Dγu(x)k+1

where aj = (j + 1)1−γ − j1−γ .
For γ ∈ (0, 1), the scheme reads

I We initialize by setting trΩV 0 = u0.

I For k = 0, . . . ,K − 1, we find V k+1 ∈ ◦
H1

L(C, yα) solution of

(trΩDγV k+1, trΩW )L2(Ω)+a(V k+1,W ) = 〈f k+1, trΩW 〉H−s (Ω)×Hs (Ω).



Time discretization for γ ∈ (0, 1). Stability
The lack of fractional integration by parts makes it difficult to
obtain energy estimates. We obtain new semidiscrete energy
estimates for the L1 scheme

Theorem (stability)

I 1−γ‖trΩV τ‖2
L2(Ω)+‖V τ‖2

`2(
◦
H1

L(C,yα))
≤ I 1−γ‖u0‖2

L2(Ω)+‖f τ‖2
`2(H−s (Ω)),

Since these are uniform in τ and the scheme is consistent1 we
derive a novel continuous energy estimate

Theorem (energy estimates)

I 1−γ‖trΩU‖2
L2(Ω)+‖U‖2

`2(
◦
H1

L(C,yα))
≤ I 1−γ‖u0‖2

L2(Ω)+‖f τ‖2
`2(H−s (Ω)).

1see next slide



Time discretization for γ ∈ (0, 1). Consistency

I The literature analyzes the L1 scheme assuming smoothness
of the solution u ∈ C 2([0,T ],H−s(Ω)).

I However, in general, this assumption is not valid!

I We showed that

∂tu ∈ L log L(0,T ,H−s(Ω))

and
∂ttu ∈ L2(tσ, (0,T )),

for σ > 3− 2γ. These are valid under realistic assumptions on
f and u0.



Time discretization for γ ∈ (0, 1). Consistency

I Using these new regularity estimates we can provide an
analysis of the L1 scheme.

I Since
∂γt u(x , tk+1) = Dγu(x)k+1 + rτγ

and the remainder satisfies

‖rτγ‖H−s (Ω) . τ θ
(
‖u0‖H2s (Ω) + ‖f ‖H2(0,T ;H−s (Ω))

)
,

where θ < 1
2 .

I Key result: ut ∈ L log L(0,T ;H−s(Ω)). Hardy and Littlewood

yields I 1−γ : L log L(0,T )→ L
1
γ (0,T ) boundedly.



Error estimates for fully discrete schemes

Discretization in time and space: stability + consistency yield

I Error estimates for U : s ∈ (0, 1) and γ ∈ (0, 1)

[I 1−γ‖trΩ(v τ − V τ
TY

)‖L2(Ω)(T )]
1
2 . τ θ + | log N|2sN

−(1+s)
n+1

‖v τ − V τ
TY
‖
`2(
◦
H1

L(CY ,yα))
. τ θ + | log N|sN

−1
n+1 .

I Error estimates for u: s ∈ (0, 1) and γ ∈ (0, 1)

[I 1−γ‖uτ − Uτ‖L2(Ω)(T )]
1
2 . τ θ + | log N|2sN

−(1+s)
n+1

‖uτ − Uτ‖`2(Hs (Ω)) . τ θ + | log N|sN
−1
n+1 ,

where θ < 1
2 .

RHN, EO, AJS. A PDE approach to space-time fractional
parabolic problems. SIAM J. Numer. Analysis. 2014 (submitted).
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Classical obstacle problem

I Consider a surface given by the graph of a function u.

I u solves ∆u = 0 for fixed boundary data (elastic membrane).

I Let us now slide an obstacle from below. The surface must
stay above it.
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Classical obstacle problem

I Consider a surface given by the graph of a function u.

I u solves ∆u = 0 for fixed boundary data (elastic membrane).

I Let us now slide an obstacle from below. The surface must
stay above it.

I For a given obstacle ψ, we obtain a function u ≥ ψ, that will
try to be as harmonic as possible.



Classical obstacle problem

I ∆u = 0 when u > ψ, since there u is free to move.

I ∆u ≤ 0 everwhere, since the surface pushes down.

I u ≥ ψ.

I Complementarity system:

λ = −∆u ≥ 0, u − ψ ≥ 0, ∆u(u − ψ) = 0 a.e. in Ω.



Motivation for the fractional obstacle problem

I Consider
u = sup

τ
E (ψ(X x

τ )),

where X x
τ is a purely jump process starting at x and τ denotes

any stopping time.

I Then
u ≥ ψ, Lu ≥ 0, Lu = 0 if u > ψ,

where the operator L is

Lu(x) = P.V.

∫
(u(x)− u(x + u))K(y).

I Natural example: K(y) = |y |−(n+2s) with s ∈ (0, 1) gives

(−∆)su = 0 where u > ψ, (−∆)su ≥ 0 everywhere , u ≥ ψ.
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The fractional obstacle problem

I Given f ∈ H−s(Ω) and an obstacle ψ ∈ Hs(Ω) ∩ C (Ω̄)
satisfying ψ ≤ 0 on ∂Ω:

u ∈ K : 〈(−∆)su, u − w〉 ≤ 〈f , u − w〉 ∀w ∈ K.

I K := {w ∈ Hs(Ω) : w ≥ ψ a.e. in Ω}.
I Nonlinear and nonlocal problem since (−∆)s !

I We use Caffarelli-Silvestre extension!

In fact, the study of the regularites properties of the fractional
obstacle problem motivated the Caffarelli-Silvestre extension.



Thin obstacle problem

I We convert the fractional obstacle problem in a thin obstacle
problem.

I The restriction U > ψ only applies when y = 0 (thin
obstacle).
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Thin obstacle problem

I Truncation of the cylinder:

‖∇(U − V)‖L2(yα,CY ) . e−
√
λ1Y /8

(
‖ψ‖Hs (Ω) + ‖f ‖H−s (Ω)

)
.

I To derive an error estimate the following regularity results are
fundamental:

I u ∈ C 1,α for α < s by Silvestre (2007).
I Optimal regularity: u ∈ C 1,s by Cafarelli, Salsa and Silvestre

(2008).
I ∂αν U(·, 0) ∈ C 0,1−s(Ω).
I Optimal regularity by Allen, Lindgren, and Petrosyan (2014)

s ≤ 1
2 ⇒ V ∈ C 0,2s(CY ) and s > 1

2 ⇒ V ∈ C 1,2s−1(CY ).
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Thin obstacle problem

I Nearly optimal error estimate:

‖U − VTY ‖ ◦H1
L(yα,C)

≤ C | log N|sN−1/(n+1),

where C depends on the Hölder moduli of smoothness of U
and V, ‖f ‖H−s (Ω) and ‖ψ‖Hs (Ω).

I Same techniques can be applied for the Signori or thin
obstacle problem.

RHN, EO, AJS. Convergence rates for the obstacle problem: classical,
thin and fractional, Phil. Trans. R. Soc. A (2015).
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Motivation: Cardiac Microstructure

I The heart has its own internal electrical system that controls
the rate and rhythm of heartbeat.

I Heartbeat produces an electrical signal that spreads from the
top to the bottom: it causes the heart to contract and pump
blood.

I Problems with this electrical system cause arrhythmia!

I Implantable cardioverter defibrillator (ICD): monitors the
heart rhythm.

I If an irregular rhythm is detected, it will use low-energy
electrical pulses to restore a normal rhythm.

I Fundamental modeling to understand the propagation of
electrical excitation is:

∂tu −∆u = f



Motivation: Cardiac Microstructure

I This conventional model neglects the highly complex,
heterogeneous nature of the underlying tissues.

I Bueno-Orovio, Kay, Grau, Rodriguez, and Burrage (2014):

∂tu + (−∆)su = f .
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Problem Formulation

Define

J(u, z) =
1

2
‖u− ud‖2

L2(Ω) +
λ

2
‖z‖2

L2(Ω).

We are interested in the optimal control problem:

min J(u, z)

subject to the non-local state equation

Lsu = z in Ω, u = 0 on ∂Ω,

and the control constraints

z ∈ Zad := {w ∈ L2(Ω) : a(x ′) ≤ w(x ′) ≤ b(x ′) a.e. x ′ ∈ Ω}.

Here,
Lw = −∇·x ′(A∇x ′w) + cw .
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An equivalent control problem

The Caffarelli-Silvestre result allows us to rewrite our control
problem as follows:

min J(trΩU , z) =
1

2
‖trΩU − ud‖2

L2(Ω) +
λ

2
‖z‖2

L2(Ω)

subject to the linear and local state equation

1

ds

∫
C

yα∇U · ∇φ = 〈z, trΩφ〉H−s (Ω),Hs (Ω), ∀φ ∈ ◦
H1

L(yα, C),

and the control constraints

z ∈ Zad := {w ∈ L2(Ω) : a(x ′) ≤ w(x ′) ≤ b(x ′) a.e. x ′ ∈ Ω}.

Existence and uniquess of an optimal pair (z̄, Ū) follows standard
arguments.
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A truncated control problem

min J(trΩv , r) =
1

2
‖trΩv − ud‖2

L2(Ω) +
λ

2
‖r‖2

L2(Ω),

subject to the truncated state equation

1

ds

∫
CY

yα∇v · ∇φ = 〈r, trΩφ〉H−s (Ω)×Hs (Ω), ∀φ ∈ ◦
H1

L(yα, CY ),

and the control constraints r ∈ Zad.
First order necessary and sufficient optimality conditions:

v̄ = v̄ (̄r) ∈ ◦
H1

L(yα, CY ) solution of state equation,

p̄ = p̄(̄r) ∈ ◦
H1

L(yα, CY ) solution of adjoint equation,

r̄ ∈ Zad, (trΩp̄ + λr̄, r − r̄)L2(Ω) ≥ 0 ∀r ∈ Zad.

Exponential convergence: For every Y ≥ 1, we have

‖r̄ − z̄‖L2(Ω) . e−
√
λ1Y /4

(
‖r̄‖L2(Ω) + ‖ud‖L2(Ω)

)
,

‖∇
(
Ū(z̄)− v̄ (̄r)

)
‖L2(yα,C) . e−

√
λ1Y /4(‖r̄‖L2(Ω) + ‖ud‖L2(Ω)).



A truncated control problem

min J(trΩv , r) =
1

2
‖trΩv − ud‖2

L2(Ω) +
λ

2
‖r‖2

L2(Ω),

subject to the truncated state equation

1

ds

∫
CY

yα∇v · ∇φ = 〈r, trΩφ〉H−s (Ω)×Hs (Ω), ∀φ ∈ ◦
H1

L(yα, CY ),

and the control constraints r ∈ Zad.
First order necessary and sufficient optimality conditions:

v̄ = v̄ (̄r) ∈ ◦
H1

L(yα, CY ) solution of state equation,

p̄ = p̄(̄r) ∈ ◦
H1

L(yα, CY ) solution of adjoint equation,

r̄ ∈ Zad, (trΩp̄ + λr̄, r − r̄)L2(Ω) ≥ 0 ∀r ∈ Zad.

Exponential convergence: For every Y ≥ 1, we have

‖r̄ − z̄‖L2(Ω) . e−
√
λ1Y /4

(
‖r̄‖L2(Ω) + ‖ud‖L2(Ω)

)
,

‖∇
(
Ū(z̄)− v̄ (̄r)

)
‖L2(yα,C) . e−

√
λ1Y /4(‖r̄‖L2(Ω) + ‖ud‖L2(Ω)).



Error Estimates

I We propose a fully discrete scheme for the control problem
based on the Cafarelli-Silvestre extension.

I The control is discretized with piecewise constants. The state
is approximated as before.

I Error estimates for the control:

‖z̄− Z̄‖L2(Ω) . | log N|2sN
−1

(n+1) .

I Error estimates for the state:

‖ū− Ū‖Hs (Ω) . | log N|2sN
−1

(n+1) .



Uniform versus anisotropic refinement

#DOFs ‖z̄− Z̄‖L2(Ω) ‖z̄− Z̄‖L2(Ω) ‖ū− Ū‖Hs (Ω) ‖ū− Ū‖Hs (Ω)

3146 1.46088e-01 5.84167e-02 1.50840e-01 8.83235e-02
10496 1.24415e-01 4.25698e-02 1.51756e-01 6.49159e-02
25137 1.11969e-01 3.08367e-02 1.50680e-01 5.04449e-02
49348 1.04350e-01 2.54473e-02 1.49425e-01 4.07946e-02
85529 9.82338e-02 2.09237e-02 1.48262e-01 3.42406e-02

137376 9.41058e-02 1.81829e-02 1.47146e-01 2.93122e-02

Table : uniform - anisotropic - uniform - anisotropic.
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HA, EO: A FEM for an optimal control problem of fractional powers of

elliptic operators, submmited to SIAM J. Control and Optim. (2014).
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Conclusions

I Discretize nonlocal operators using local techniques.
I The analysis requires nonstandard ideas for FE:

I Weighted spaces and weighted norm inequalities.
I A posteriori error estimators on cylindrical stars.
I Combination of Hölder and Sobolev regularity and growth

conditions for obstacle problems.
I . . .

but the implementation is “simple”.

I Efficient solution techniques (multilevel and adaptivity).

I Provided an analysis of a commonly used but not properly
analyzed scheme for Caputo time derivatives.

I These techniques have already found applications in control
theory2, image processing and others.

2
HA, EO, AJS A fractional space-time optimal control problem: analysis and discretization. SIAM J. Control

and Optimization, 2015 (submitted).



Future work

I Approximation classes for anisotropic adaptive methods.

I Multilevel methods for obstacle problems (with L. Chen UCI).

I Discretization of fractional powers of nondivergence form
elliptic operators (with P.R. Stinga TU Austin).

I Applications.

I . . .
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